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ABSTRAC"

The time—independent linear transpori problem in a purely absorbing (no
scattering) random medium is considered. A formally exact equation for the
ensemhle averaged distribution function <¥» 1s derived. Under the assumption
of a two-fluid statistical mixture, with ihe transition from one fluid to the
other assumed to he determined by a Markow process, an exact solution to this
equation for <?} is obtained. In the source-free case, this solution 1s shown
to agree with the result obtained by ensemble averaging simple exponential
attenuation. Several approximations to the exact -equation for <K¥> are
considered, and numerical results given to assess the accuracy of these

approximations.

*This work was performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
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I. TINTRODUCTION

In this paper we consider the problem of describing particle transport in
a statistical (random) medium. Specifially, we consider time—-independent
transport in a medium in which the only particle-medium interaction is annihi-
lation (absorption). Allowing for an external source of particles in the
medium, we then have the generic linear %inetic (transport) equation along a

direction s given by

dy (s)

5 + a(s)¥(s) = S(s) . (10
as

Here s 1s the spatial variable; ¥(s) is a distribution function defined such
that the number of particles of speed v between s and s+ds is given by
v_lY(s)ds; o(s) is the annihilation (absorption) cross section, defined such
that o(s)ds is the probability of absorprion for a particle traversing a dis-
tance ds; and S(s) is the external source strength, defined such that S(s)ds
is the number of particles introduced in:o the medium per unit time between s
and s+ds. If Eq. (1) is assumed to hold for s > 0, we then have the boundary

condition

¥() =v, , (2)

where ¥, is the prescribed incident distribution at s = 0. We assume that ¢
and S in Eq. (1) are known only in som: statistical or probabilistic sense.
That is, at each space point s there is some time-independent probability that
each of these two quantities will assume certain values. Accordingly, we
consider 0 and S; as well as the distrihution function ¥, to be random vari-
ables., Assuming we know the complete statistical description of ¢ and S, we

seek the solution for <¥>, the ensemble averaged (expected value) of the



distribution function VY. We emphasize that Eq. (1) is a transport equation
for particle propagation along a particular direction s in a three-dimensional
setting. That is, our analysis and results are applicable to a random, three-

dimensional medium.

There are conceptually two distinct ways to proceed. In the first

approach, one can immediately write the soiution to Eas. (1) and (2) as
¥(s) =¥ exp[~f% ds'a(s")] + ° ds's(s"exp[-[% ds"a(s™)] , (3)
o] | s'

and ther ansemble average the right-hand side of Egq. (3) to obtain <¥(s)>.
Alternately, as a second approach one cou.d develop, from Eqs. (1) and (2), a
transport-like equation for <¥(s)>, and then solve this equation to obtain the
ensemble averaged solution. 1In this paper, we primarily focus on the second
approach, but we also consider the first approach 1n the source-free (S=0)

case.

Specifically, in Sec. II we develop the details of the second approach by
using a projection operator technique, the method of smoothing as described by
Keller!»2>3 and Frischa, to derive a formally exact equation for <¥(s)>. This
equation contains an infinite series, witlt the nth term in this series involv-
ing an n-fold integral arising from n applications of the inverse transport
operator. This multiple integral acts c¢1 various spatial correlation func-
tions describing the statistical nature o/ the medium. For small statistical
fluctuations, this infinite series can be truncated to a single term to obtain
the lowest order (in the smallness parameier describing the fluctuations) sta-
tistical correction., The integral operatcr in this lowest order approximation

can be localized by invoking a standard Fckker-Planck approximation.



These formal results are specialized, in Sec. III, to a statistical
mixture of two immiscible fluids, with o and S at any space point each taking
one of the two values, that assoclated with each fluid. We show that the
assumption of a Markov (Poisson) process for the transition from one fluid to
the other allows an explicit calculation of all of the required spatial corre-
lations. In addition, under this Markovian model, one can also obtain an
analytic expression for the probability density distribution function corres-
ponding to the optical depth random variable t, defined as

t(s) = [° ds'a(s’) . (4)
o
This distribution function can be used to ansemble average the right-hand side
of Eq. (3) in the source-free (S=0) case, since in this case Eq. (3) simply
be;omes ¥(s) = ¥, exp(-1).

In Sec. IV we show that the transport-like equation for <¥(s)> derived in
Sec. II can be solved exactly for the two-fluid Markovian medium, 1in the
special case of a homogeneous (spatially independent statistic; for o and S)
medium. We numerically compare this exact solution with the result predicted
by the small fluctuation equation (that whi:h truncates the infinite series to
a single term), as well as to the Fokker-Planck approximation to this small
fluctuation equation. We also use the prolrability density distribution func-
tion for the optical depth Tt obtained in Sc¢c. IIT to carry out the details of
ensemble averaging Egq. (3) in the source-free (S=0) case. The results of
these two approaches to obtain <¥(s)> in a source-free medium are shown to be

identical. The final section of the paper :s devoted to a few concluding remarks.



As 1s clear from the ahove outlire, the emphasis in this paper 1is on
particle transport in a random medium composed of two immiscible turbulently
mixed materials, This work was mot vated by the need for an accurate
transpért description in the calculation of the performance of laser- or beam-
driven fusion pellets. At an interface between two materials, these pellets
are susceptible to Rayleigh-Taylor instahbilities which can lead to a two-fluid
turbulent mixture around the interfeace. A review of Rayleigh-Taylor
instabilities within the context of ins-rtially confined fusion has recently
been given by Jacobs.5 We intend to fmplement our formalism in the laser
fusion code LASNEX used at the Lawrence LivermorewNatiénal Laboratory. Other
areas of applicaz’_.n al.. come _> wind. 1In a boiling-water nuclear reactor,
the water, which acts as both coolant ard moderator, is in_a twé-fluid random
state (liquid and vapor). A proper treatment of the neutron transport must
take the statistical nature of the mixture into account. In shielding
calculations through concrete, the rasdom nature of the materials (e.g.,
gravel) in the concrete implies a need for a statistical transport treatment
to obtain an accurate measure of the shiwld effectiveness. Still anofher area
of application is the calculation of 1light transport throuéh a two—component
random medium, such as sooty air or murky water. In general, there seems to

be numerous areas of application for a transport theory for random media.

Finally, we note that the equatior of radiative transfer with certain
stochastic coefficients has been studied rather extensively with the

astrophysical community.6’7

However, the emphasis in this work has been on
line transport with random Doppler shifts of the absorption coefficient due to
small random velocity fields. The prohtlem we treat, that of two turbulently

mixed materials, is quite different from this astrophysical problem, even

though both involve a stochastic linear rLransport equation.
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I1. THE EQUATICN FOR <¥(s)>

We rewrite Ea. (1) as
LY + My = <S> + g

’ (5)

where <S> 1is the ensemble averaged source, L 1is the ensemble averaged

transport operator given by

L= v w> (6)

ds

and q and M are the corresponding fluctuating quantities, i.e.,

q=8S-¢< ; M=g-"0 . (7
We now Introduce ¢(s) as the fluctuating portion of ¥(s), i.e.,

¥ = <¥> + ¢ . (8)

We note that g, M, and ¢ all have a zero expected value, i.e.,

<@ =<M =<p>=0 . (9)

Following Keller 1,2,3 4nd Frisch,4 we use Eq. (8) in Eq. (5) and ensemble

average to obtain

LY> + <MD = < . (10)



The term <M¢> in Ea. (10) represents the statistical correction to the
transport description. To compute this quantity, we subtract Eq. (10) from

Eq. (5) to obtain

Lé = q = MCYD> + [<Mé> — M4] , (11)
or

o = Llq - M<w>) + (B] - Bp)e . (12)
Here B, is the projection operator defined hy
bie = L-E\ﬂ¢/ = \L"1M¢> . (13)
B, is the corresponding unprojected operator defined by

Byo = LMo (14)

and the inverse operator 11 is explicitly given by (since ¢ vanishes at

s = 0)
L-1¢(s) = fs ds'¢(s') exp[—fs d3"<o(s")>] . (15)
o} s’

We rewrite Eq. (12) as

(I - By + By =L l(q-mp) (16)



which has the formal Neumann series solut:ion

)n -1

6= 7 (-1)“(32 -B)" L7 (g - M<®>) . (17)

n=() 1

Operating on Eq. (17) with the operator M and ensemble averaging gives

M> = L nzo (-1)“(fn+2 -7, (18)
where

§n+2 - 3,3, - B Lo n>»0 (19)
and

T .5 = <B,(B, - BT B> n>0 . (20)
Use of Eq. (18) in Eq. (10) gives

<P + L E OMT L, - T, <> . (21)

n=0

Equation (21) 1s the formally exact transport-like equation for <Y>, the
ensemble averaged distribution function. The infinite series in this equation

is the statistical correction to the transport description.

From thelr definitions according to Egs. (19) and (20), one can easily
deduce recurrence relationships for in an '1'n given by
n-2

o -3 <ﬁL-1M)1>%n_i i n>3 , (22
1=2

%n P e



n-2 .
o= cuho™a - 7 <«heb® n>3 . (23)
n i=2 n-=l1

These recurrence relationships are initiated by the explicit n=2 expressions

T, = <71y T, = <"~ hoan (24)

-

From these recurrence relationships one can prove, by induction, that Tn and

~

Tn can be written in explicit form as

- _ P _ P _ P, _
T = a < o oL chy T

1

Q> , n>» 2, (25)

~ -1,\P1., . =1 P2 -1, Pi
T =1 a ;<L ™) DAL M) > .. (LM XXY> > 2. (26)
1

The powers Py can assume any nonnegative integer values subject to the

constraint
pl + pz + eos + pi =2m ’ (27)

where m = n-1 for Eq. (25) and m = n for Eq. (26). The sum over i in

Eqs. (25) and (26) is over all possible zombinations for the powers Py, and

ay = +1 for an odd number of terms in the product involving ensemble averaged
operators, and a; = =1 for an even number of terms. As an explicit example,
we have

To = <™ l> - «L” DL~ lg>

- Bl (28)



Ty = (L)< - <« o dhHan
- «qrrimBHa-ndHan . (29)
To proceed, we define the nth order spatial correlations according to

N (S)seees8y) = M(s|IM(s9) .. M(s,_plals)> (30)

and

N (Syyee8y) = Qs IM(S9) ee M(s_IM(s)> (31)

aud, iis analogy to Eq. (4), we define 1, as the optical depth corresponding to

a distance s,, i.e.,
n
T, - f ds'a(s') . (32)
4 :
In terms of these definitions, we can writs, using Eq. (15) for L_l,

ds, «.. / ds__ exp[-((r)—(rn )]

-lv

xJa N § .8 ~ ] (33)

dﬁn—l exp[—((r)-(rn_1>)]

x Pa [ N LN N Jers >, (34)

-1



where the arguments in the product terms .nvolving the NP- and Np are s, sy,
i

eee s Spop in this order. Again, as an explicit example we have

. s %1 52 °3
LT, = / ds, / ds, / ds, / is, exp[—(<t>—<14>)]
o o 0 0

- -~

x [N5(5’51’52’53’34) - ﬁ?(s,sl)N3(52,53,54]

- ﬁB(S’SI’SZJNZ(S3’SaJ] , (35)
~ s ° 2 S3
LTS = g dsl £ d52 g ds3 £ ds, exp[-(<r>-<14>)]

x [ﬁ,(s.s,,sz.sﬁ,sﬁ) - ﬁn(s,sl)ﬁ3[s

-

22535,)

- N3(s,sl,sz)ﬁz(s3,sa]]<w(54)> . (36)

To proceed further, one needs to specify a statistical model to compute the
spatial correlations ﬁn and N, - We consider one such model in the next

section.

To summarize our considerations thus far, Eq. (21) is the formally exact
transport-like equation for the ensemble averaged distribution function
<¥(s)>, with %n and ;n given by Egs. (33) and (34). The statistics of the
medium enter through the multipoint spatial correlations &n and En defined by
Eqs. (30) and (31), with q and M in these equations given by S - <S> and
g — <o>, respectively. We note that the statistical corrections in Eq. (21),
embodied in the infinite series, involve 1onlocal (multiple integral) opera-
tors. It is clear from Egs. (19) and (20} that %n and ;n decrease geometri-
cally with n in the smallness parameter characterizing the statistical fluc-
tuations. Accordingly, one can obtain the lowest order, in this smallness

parameter, approximation by keeping only the first term in the infinite series

10



in Eq. (21). We then have, as the small fluctuation approximation, the

transport-like equation

d§:> oY + £3 ds | exp[-~(<>=<t >
x [<M(s)q(sl)> - <M(3)M(s;)><?(sl)>] = <S> . (37)

We see that even 1in this 1lowest order approximation, the statistical

correction in the transport-like equation 'nvolves an integral operator.

One can localize the integral operato~ in Eq. (37) by employing a Fokker-
riranck approximation. Specifically, we approximate <Y(51)> in Eaq. (37) by an
Nth order Taylor series expansion about the point s, i.e.,

1 n d"<¥(s)>
— (s, - §) ————— . (38)

n! 1 n

N
<¥(s ) )> = Y
n=0 ds

Use of Eq. (38) in Eq. (37) and integrating term by term gives an Nth order
Fokker-Planck approximation to the smali fluctuation equation. To obtain
explicit results, we consider the special case of a medium in which <o> is a

slowly varying (essentially constant) function of position. We then have

<> = <1p> = <c>(s-sl) . (39)
We further assume that the two-point spatial correlactions in Eq. (37) are
exponential in form, i.e.,

M(s)q(s))> = a exp[-nls—sl|] , (40)

<M(s)M(s))> = B exp[-nls-slll , (41)

11



where a, B, and n are slowly varying (essentially constant) functions of
position. In the next section we present a Markov statistical model for a
two-fluid mixture which predicts two-point spatial correlations of precisely
this form, and gives explicit expressions for a, B, and n in terms of the
parameters in the Markov model. Using Eqs. (38) through (41) in Eq. (37) we
find the Nth order Fokker-Planck approximation to the small fluctuation

equation given by

N n
P bty -2 7 (1w sy -2 (42)
ds ds
g n=0 a g
where we have defineu
g=<>+n . (43)

In obtaining Eq. (42) from Eq. (37), we have replaced the lower integration
limit in Eq. (37) by s; = -—=, which means we are neglecting terms of order
exp(—as). This 1s consistent with 5 being large, which implies rapid conver-
gence of the sum in Eq. (42). We note that the assumption that ¢ is large
implies in general that n'l, the spatial correlation length, is small. As we
shall see in Sec. IV, the small fluctuation result, Eq. (37), and its Fokker-

Planck approximation, Eq. (42), can yield nonphysical results 1if the

fluctuations are, in fact, not small.

To summarize the results of this section, we have developed three
descriptions of time-independent transport in a purely absorbing statistical
medium. These are: (1) Eq. (21), which 1is exact but very formal;
(2) Eaq. (37) which assumes small fluctuations; and (3) Eq. (42) which assumes

small fluctuations, exponential spatial correlations with a small correlation

12



length, and slowly varying spatial properties <¢>, a, B, and n. In the next
section we present a Markov statistical model for a two-fluid mixture which

-~

yields explicit results for all of the required spatial correlations N, and

N,. In particular, this model predicts two-point spatial correlations of the

exponential form given by Egqs. (40) and (41).

ITII. A MARKOV STATISTICAL MODEL

We consider a static turbulent (random) mixture of two immiscible fluids
which we denote by fluid A and fluid B. We assoclate a cross section ¢g; and
source Siv(i-A,B) with each fluid. As a particle travels through this fluid
mixture, it will pass through alternating fluld packets of A and B. We assume
that the staéistics of this situation can be described by a stationary Markov
process In the following sense. Given that a particle 1s in fluld A at
position s, the probability of finding itself (in the absence of absorption)-
in fluid B at a position s + ds is simp.y given by ds/AA. Similarly, given
that a particle is in fluid B at position s, the probability of finding itself
(in the absence of absorption) 1n fluid A at a position s + ds 1is given by

ds/Ap. We take the o5, Sy, and A; to be v'onstants, independent of position.
B i i i

For this two state Markov chain, w: define the transition probability

function Pii(s’t)’ i = A,B, as

Pyj(s,t) = P[X(t) = j[X(s) = ] t>s (44)

where the right-hand side of this equation 1s the conditional probability that
the random variable X, which we define tc be the state of the fluid, takes on

the state j at a distance t (from some defined origin), given that the

13



variable was in state i1 at a distance s from this origin. Without loss of
generality, we assume t » s. Since the probability of tranmsition from fluid i
to fluid j in a distance dt is given by dt/ki, one can perform a transition
balance into and out of a given state, as a function of t for a fixed s.
These balance equations are well known as the Chapman-Kolmogorov equations

8
(forward form), and are given by

dPpp/3t = = Ppp/Ap + Ppa/Ay (45)
APpA /B3t = = Ppaa/dy + Ppp/ig (46)
dPga/3t = = Ppasrap T Ppg/ag (47)
aPgg/dt = - Pgg/Ag + Ppa/Ay | (48)

The boundary conditions on these differential equations are given by

Pyals,s) = Ppp(s,s) =1 . (49)

Pyp(s,s) = Pgpa(s,s) =0 . (50)
It is clear that

P,p(s,t) + Pya(s,t) =1 s (51)

Ppals,t) + Ppp(s,t) =1 R (52)

and hence two of the equations in Egs. (45 through (48) are redundant.

14



The solution of Eqs. (45) through (50 is

- -d/x

Pap(s,t) = (4 + A L ag(l - ¢ " 7P) (53)
-1 —d/lp

Paals,t) = Op + ap)7" Ay + nv e ) (54)

-d/A

PBA(S,t) = (AA + AB)_I AA(]. -1 p) 'y (55)
_ -d/x

Pgp(s,t) = (A + A"t (Ag+ x, e P}, (56)

wuere we have defined
-1 -1 -1 . = N
Ap = AA + AB H d t ] . (57)

We note that these four conditional probabilities are independent of the
choice of origin for the position variable they depend only upon the distance

t - s between the points t and s.
We now define pi(s) as the probabilizy that at any point s the fluid is
in state 1, i.e.,

py;(s) = PX(s) =1] . (58)

Since the Ag have been assumed to be independent of position, it is clear that
the py are also independent of position That is, the s dependence on the
left-hand side of Eg. (58) is redundant. In terms of the p;, we have for the

ensemble averaged cross section and source,

15



{g> = P,J, *+ Pgig . (59)

<S> = pASA + pBSB . (60)

The total probabilities py are related to the conditional probabilities Pij by
pA(t) = PAA(s,t)pA(s) + PBA(s,tipB(s) , (61)

with a similar expression for pB(t) found by interchanging the indices A
and B. Equation (61) holds in general, and in particular for our case 1ﬁ
which the py are independent of position. Use of Eqs. (53) through (36) in
Eq. (61) glves
-1 , —d/xp
PpAlE) = (A +25) 7 (X, + [Agp,(8) = A ppls)]e ) S (62)

For p,(t) to be constant, independent of t, Eq. (62) implies

A - A 0 . (63)

BPa ~ *aPR T

We then deduce

-1
pi = (AA + XB) Ai » (64)

as the relationship between the Py and the A;. We shall shortly see that Ags
and hence py, is proportional to the volume fraction of the ith fluid [see

Egs. (80) and (81)}.

We now turn to the calculation of the two-point auto-correlation functlon

for the cross section. We have



<M(s)M(t)> {a(s)=<a>]a(L)=Ia>]>

2 _ 2
(cA-<o>) PAA(S,E)JA + (GB <ag>) PBB(s,t)pB

+ (0,=<a>)(ap=<a>) [P, (s,E)p, + Pp,(s,)p ] . (65)

This gives, using Eqs. (53) through (56) for the Pij(s,t),

2 -1/X
M(sIM(E)> = (o, - og)“Papg e P (66)

where we recall that d is the distance berween the points t and s. A similar
calculation for the two-point cross—corralation function between the cross

section and the source gives

~d/A
<M(S)Q(t)> = (GA - UB)(SA - SB)PAPB e P . (67)

In the notation of the last section [see Eqs. (40) and (41)], we then have

a = (UA - GB)(SA - Sg)paPR ) (68)
2
g = (UA - OB) PAPB 5 (69)
-1 _ ,-1 -1
n= Ap AA + Ap ,- (70)
as the constants in the exponential two-point correlatiomns. A similar

exponential two—-point auto-correlation as given by Eq. (66) was previously
9
reported by Debye and Bueche and Debye, inderson, and BrumbergellO within the

context of light scattering by an inhomogeneous solid.
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The higher order —correlations, &P and En for n > 2 as defined by
Eqs. (30) and (31), can be computed explicitly by an extension of these argu-
ments. For a general n, these algebraic expressions are relatively complex.
However, certain linear combinations of products of these higher order corre-

lations are simple exponentials. Omitting the considerable algebraic detail,

one finds
- -(s,~s )/
Ja N 8 ...F N ]=n e L S (71)
i P Py Pi-1 Py .
—(s,-s )/A
a8 8 .08 N J=xe Lne (72)
1 P1 P2 Pi-1 Py n
where
Hy = (g5 - )" 1(S, - Spdpapgipg - PO 2 n>2 , (73)
K, = (o - GB)npApB(pB - pA)n_"’Z . o> 2 . (74)

Here the spatial points are ordered such that S| > S3 > ... X S, and the
arguments in the product terms in Eqs. (71 and (72) involving the ﬁp and Np
i k

are sy, Sg, e-s , Sy in this order. The covefficients ay and the subscripts P

are as discussed in the last section, just below Eq. (27).

The interesting point here is that the left-hand sides of Eqs. (71) and
(72) are precisely of the form needed ir the expressions for %n and ;n as
introduced 1n the last section. That 1is, using Egs. (71) and (72) in
Egs. (33) and (34) gives the relatively simple results for the nth order term

in Eq. (21) as

18



> s 1 n-2 -
LT = [ ds1 i ds2 R dsn-IHn exw[—a(s—sn_l)] . n> 2 , (75)
) o o
~ s °1 Sn-2 .
LT = £ ds, £ ds, ... g dsn_IKn<Y(sn_1)>exp[-o(s-sn_1)] » m > 2, (76)

where [see Egs. (43) and (70)]

g =<a>+ a3t +agt (77)
In writing Eqs. (75) and (76) we have used an expression analogous to Eq. (39)
for <t> - <t,_;> since our Markov statistical model is restricted to cases for
which <o> 1s independent of position. We note that H, and K. and hence %”
and ;n’ vanish for n > 2 in the spec%al tase that py = pg = 1/2. Hence the
small fluctuation approximation introduced in the last section, Eq. (37), is,
in fact, exact for all size fluctuations when p, = pg = 1/2. For any other
values of p, and pp, Eg. (37) 1s only sirictly valid for vanishingly small

fluctuations. As we shall see shortly, u, = pp = 1/2 implies equal volume

fractions of the two fluids A and B.

Let us now address the question as tu the physical meaning of our Markov
model. Since the probability of transivion from fluid i to fluid j in a
distance ds 1s given by ds/ki, where A; is a constant, the distribution of
chord lengths in a fluid packet is a classical Poisson process. That is, the
chord length L of a given fluid packet i3 exponentially distributed, with a
probability density function given by

_1 —L/Ai
£4(L) =27 e , 1=1B . (78)

19



Equation (78) is implied by the Chapman-Kolmogorov equations by solving these
» equations after deleting the transition-in terms [the second term on the
right-hand sides of Eqs. (45) through (48)]. The mean of this exponential

distribution, <L;>, is given by

<L,> = [ dLLE (L) =, . (79)

o
Thus the constant X; in the Markov model! 1s just the average chord length
through a fluild packet of type i. This‘average chord length is given by the

9,1
Debye formula 0

Ay = 4Vy/S -, (80).

where Vj is the volume associated with fluid i, and S is the common surface
area between the fluid packets of fluids 4 and B. Using Eq. (80) in Eq. (64)

we find

py = (v, + vp)Tlv, (81)

That is, the probability Pi is just the vo.ume fraction of fluid i in the two-

fluid stochastic mixture.

We now have the physical interpretation of our Markov model. The
statistics of the two-fluid mixture are such that a particle traveling through
this fluid sees alternating packets of fluids A and B, with the distance
traveled (in the absence of absorption) :n any fluid packet being a random
variable with an exponential density distribution given by Eq. (78). Further,

the parameter Xy 1in this distribution is the average chord length through a
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fluid packet of type i, and is related to the volume fraction of fluid i in
this two-fluid mixture through Eqs. (80) and (8l1). We note, however, that it
is not sufficient to know the two volume fractions Py, and pg. In addition to
these volume fractions, one must know one of the Ay to completely specify the

statistics of the two—fluid mixture.

Before leaving this section, we use this Markov model to calculate
another quantity which we shall find useful. The optical depth 1(s) between

any two points a distance s apart, say s, and s,+s, is defined by

(o]

so+s
(s) = | ds'a(s') . (82)
s
o
Since o is a random variable, so is We seek the probability density

function for the random variable t, given a distance s. Since our medium is
described by statistics which are independent of position, the point So 1is

irrelevant; the random variable t 1s independent of s Since there are two

o*

states, A and B, between s_ and Sy¥s, we ‘tave

)
t(s) = g, x [total track length through A in distance s]

+ gg X [total track length through B in distance s} . (83)

To obtain the distributions of the total track lemgth through A and B in a
distance s, we make use of a problem cutline given by Lindley.ll Let the
length a particle travels through in the 1ith packet of A, before finding
itself in fluid B, be denoted by the random variable Xi, Similarly, let the
length a particle travels through in the ith packet of B, before finding

itself 1in fluid A, be denoted by the random variable Y;. We know from
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Eq. (78) that Xy and Y; in our model are independent exponentially distributed

random variables, and their cumulative distribution functions are gilven by

-X/AA
P(Xi <(x) =26(x) =1-e , 0 < x <= . (84)
, —y/xB
P(Y; <y) =H(y) =1 - e . 0<y <™ (85)
We now define
n
G (x) = P(1§1 X, < x , T S (86)
n
H (y) =P 151 Y, <y , ; > 1 (87)
with
Go(x) = Ho(y) = ] . ‘ (88)

Gn(x) and Hn(y) represent, for n » 1, the distribution of the total track

length in fluids A and B, respectively, In n packets of fluid.

We also define the random variable 3(s) as the total track length of
fluid B in the distance s given that the point s, is 1in fluid A. Similarly,
we define the random variable a(s) as the total track length of fluid A in the
distance s given that the point s, is in fluid B. Then, according to Eq. (83)
the optical depth as a functlon of the distance s, t(s), is given by one of

two expressions, namely

t(s) = agB(s) + gpls-8(s)] , SoEA (89)

oT

1(3) = opa(s) + ogls-a(s)] , s_eB . (90)
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The cumulative distribution function F(t.s) 1is the probability that t(s) is

less than a value t, given a geometric distance s. We have

F(t,s) = P[1(s) < t]
= P{ogB(s) + aguls=8(s)] < t}P(s,eA)

+ P{opa(s) + ogls—a(s)] < t}(s,eB) . (91)

Recalling that
P(s eA) = p, ; P(s,eB) = pg , (92)

and rearranging Eq. (91), we find

gs -t t - o,s .
T - o, +PBP a(s) <ﬁ' . (93)

F(t,s) = p,P B(s) >
A B A B

If we label the fluids such that g, > dg, Eq. (93) immediately gives, since

0<a, B < s,

0 s T < aps

F(t,s) = (94)

1 . T > %

* which is just the physical statement that in a distance s the minimum optical

depth is ops and the maximum optical depth is g,s.

To evaluate F(t,s) for ogs < t < gas, we need compute the distributions
for a(s) and 8(s). To obtain the distribuiion for B(s), we note that if there
are exactly n transitions from state A to state B in a distance s-x, then the

track length through the n packets of fluid B must lie between 0 and x. The
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probability of exactly n transitions from state A in a distance s-x is given

by
P = G (sx) =~ G, qi(s—x) . (95)

Thus we may express the distribution for B(s) as

P{B(s) < x] = nZO H (x)[G (s-x) - G ,(s-x)] . (96)

In a similar fashion, we can deduce the distribution for a(s) as

-
Pla(s) < x] = Z Gn(x)[Hn(s-x) - Hn+1(s-x)] . (97)
n=0
2
Now, it is known} that the sum of n identically distributed exponential random

variables with parameter 1/X is given by a gamma distribution with parameters

n and 1/A. Thus we have in our case

-x'/
'y The R
G (x) = [7 dx’ WCY -, n>1 (98)
o]
S AD
., nptThe P
B (y) = [ dy’ DT T " 1. (99)
o

From Eqs. (88), (98), and (99) we deduce
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1 s - X

G (s=x) = G (s=x) = —¢ ( AA~—) e , n>» 0
~(s=-x) /A

1 s - Ky" B

Hn(s—x) - Hn+1(s-x) =T ( ABME) e . n>0 . (100)
Thus P[B(s) < x], given by Eq. (96), becomes
-(s=x)/X _ 172
P[B(s) < x] = e Al + (i x x)
A'B
« X4 e-y“B 1 2((*"_‘_"ﬂ)1/2 (101)
Y77 A ’
o y A"B ]

where we have recognized the Taylor series expansion for the modified Bessel

function as

° (272!
II(Z) = rZO ;TT;:TTT— . (102)

A similar result is found for P{a(s) < x]. Using the fact that P[B(s) > x] =
1 - P[B(s) < x] and inserting these results into Eq. (93) gives the cumulative

distribution function in the optical depths range ogs < 71 < gps as

(172
-u (uv) —xz/u
F(1,s) =p,ql — e [1+2 del(Zx)e ]
o
~-v (uv)1/2 —xz/v
+ ppe [h+2 1xI1(2x)e ] s
o
ogs < 1 < gps R (103)

where we have defined
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1 B ] A
u =< (_:_—) > Vo= == ["‘_;—J . (104)
AA GA GB g UA UB

Equations (94) and (103) give the cumulative distribution function for all
physically meaningful (namely positive) values of t; the geometric distance s
is simply a parameter in this distribution. We use this distribution function

in the next section to obtain the exact soiution to a transmission problem.

IV. SOLUTIONS FOR <¥(s)> AND NUMERICAL RESULTS

As was stated in the introduction, «ne way to obtain the solution for
<¥(s)> is to ensemble average Ehe solution ¥(s) as given by Eq. (3). We carry
out the algebraic details of this averaging for the source-free (S=0)
problem. In this case Eq. (3) 1is simplv ¥(s) = Yo exp(-t), and ensemble

averaging this pure exponential, we have
<¥(s)> = ¥ Cexp(-1)> = ¥_ [T dii(r,s)eT (105)

o
where f(t,s) is the probability density function for the optical depth random
variable T, with s a parameter in this disiribution function. An integration

of Egq. (105) by parts introduces the cumulative distribution function F(t,s),

and we have
A -1 .
<¥(s)> =¥ |e + [ dtF(t,s)e , (106)

where F(t1,s) is given by Ea. (103) for c¢ur two-fluid Markovian stochastic

mixture.
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To evaluate the right-hand side of Eq. (106), we introduce the Laplace

transform, with a transform variable p, of <¥(s)> as ¢(p), 1l.e.,

o(p) = [T dse”PSc¥(s)> . (107)
o]

Laplace transforming Eq. (105), we then ohtain

O'AS

#(p) = ¥ [(o, + S [Tds [ dtF(r,s)e

o Cp8
B

“(pstt)y (108)

We change integration variables in Eq. (1:8) from (s -) to fu,v)} wher~ - and
v are defined by Eg. (104). The double integral in Eq. (105) then becomes a
double integral over the first quadrant ¢f (u,v) space. Inserting Eq. (103)

for F(tr,s) we then have

—]. - -] [ -]
o(p) = ?0(0A+p) + TOAAXB(GA-JB) £ du £ dv

x [pA(l -e ) pBe-V * 2p,g(u,v) + ZpBg(v,u)]
x exp{—[AA(pA+aA)u + xprB+oB)v]} . (109)

where we have defined the function g(u,v) s

Cawy /2 2,

glu,v) =e [ del(zx)e‘“ . (110)
[o]

The difficult integrations on the right-hand side of Eq. (109) can be written

in generic form as
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(uv)

1/2 5
-u e—(au+bv) f /u

I =["du [” dve dxI,(2x)e " , (111)
o] (o]

(o}

where a and b are positive constants. Interchanging the orders of the x and v

integrations in Eq. (111) gives

e—(1+a)u 2/u bv

fw dve . (112)

I = IG du fa del(Z:l()e_x
x2/u

o o

The integral over v is trivial, and if we change Iintegration variahles from u

to y according to y = (l+a)u we then have

2
-1 ® o _ (1+a) (1+b)x
I 5(iva) / del(Zx) f dy exp[ (y + - )] . (113)
o o)
13
‘This integral over y can be expressed 1in terms of the modified Bessel

function Kl(z), and we are then left with the single integral over x

1+b

2 1/2
I== (1+a) g‘ dxxIl(Zx)Kl{Z[(1~a)(1+b)] x} . (114)

13
This final integral over x can be expressed as a hypergeometric function

F(2,1; 2; z) = (l-z)'l, and we obtain the relatively simple result
I = {2b(1+a)[(1+a)(1+b) - 1]}71 . (115)

Using this generic result to integrate the terms involving g(u,v) and g(v,u)

in Eq. (109), we obtain after some algebraic simplification,

#(p) = ¥ | —P2 T2 : (116)
(p+a)(p+a>) - B
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where <o> is the ensemble averaged cross section given by Eq. (59), B is the
coefficient in the two—-polint auto-correla-ion function [see Eq. (41)] given by
Eq. (69), and 0 is defined by

~ -1, ,-1
Laplace inversion of Eq. (116) then gives the exact result for <¥(s)> in the

source—free, two—-fluld Markovian mixture 1is

I‘+ - 0 —!‘+S g — T_ . —r_s
<¥(s)> =¥ ) e + (—=——) e , : (118)
(o] r - T r — T
+ - + -
with
! N .2 1/2
r, =5 {<>+0 (o> - 9)" + 48] |} . _ (119)

For equal volume fractioms, i.e., p, = pg = 1/2, Eq. (118) has been obtained
earlier by Bourret 14,15 by the method of parastochastic operators in the
special case of a dichotomic Markov chai:. However, as discussed by Frisch,a

it is only the P,=Pp = 1/2 result which can be obtained by Bourret's method.

B
This is related to the discussion below ‘q. (77) in this paper concerning the
vanishing of Hn and K, for n > 2 when p, = pg = 1/2. Equation (118) has the

proper behavior in known limiting cases, namely

=0 S

<Y(s)> l—+6 e s (120)
A

0,8

<¥(s)> i , (121)
B

<¥Y(s)> ;——I—:B e-(c)s , (122)
A’"B
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“UAS "O'BS
<¥(s)> —X._A_-P; pA e + p, 2 . (123)
A’"B

There is one additional limit that 1is iInteresting to consider, namely

og * 0 and Tp > e This corresponds physically to the case of packets, with
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an infinite optical thickness, of fluid » imbedded in a vacuum background. In
this case Eq. (118) reduces to

—s/AB
<¥(s)> ;—:3 DB e . (124)
B

gy
The factor pp on the right-hand side of Eq. (124) is just the probability that
a particle starts in a packet of fluid B, the vacuum. [If it started in fluid
A, it would be absorbed at s=0 since u, = =, and hence not contribute to
<¥(s)>.] The exponential term in Eq. (1I%) merely states the correct physical
fact that in this limit the mean free path of a particle 1is just Aig, the

average .distance between packets of fluic A.

We can use the exact result for <¥is)> given by Eq. (118) to assess the
accuracy of the approximate transport models Introduced in Sec. II, namely the
small fluctuation description given by £q. (37), and the Nth order Fokker-
Planck approximation to this small fluctuation equation, given by Eg. (42).
In the source-free (S=0) case with <o> independent of position, Ea. (37) 1is
written, using Egq. (41) for the required two-point spatial correlation with n

given by Eq. (70),

-o(3=s.)
L v o> =8 [*ds) e Vas)» o, (125)
o]
with 8 and g given by Egs. (69) and (77) respectively. The integral in this

equation is of the convolution type, and hence Eq. (125) is easily solved by

Laplace transforming. The result is

l‘+ - aq —r+s g —- T -r S
<H(s)> =¥ (-;———) e + (—) e , (126)



where, in this case,

r =

. ]1/2}

[<o> + & £[(<o> -~ @)% + 48

Nlu—-

. (127)

A comparison of this small fluctuation result [Eqs. (126) and (127)] with the
exact result [Egqs. (118) fnd (119)] shows that they are very similar in form.
The only difference 1is that the small fluctuation result involves 8, whereas
the exact result 1involves G 1in place of 8. These two results will be
identical when & = g, which occurs for Py = Pp = 1/2; 1.e., equal volume
fractions ot the two fluids. We previousiy pointed out [see the discussion
below Eq. (77)] that the small fluctuation =quation is, in fact, exact for all
size fluctuations when Pp = Pg = 1/2. However, we do not have a physical
understanding as to what 1is special about w»qual volume fractions for the two

fluids which makes the small fluctuation equation exact in thils case.

We now consider Eq. (42), the Fokker-i"lanck approximation to this small
fluctuation equation, in the low order cases N=0, 1, and 2. In the source-

free (<S> = @ = 0) case, the solution is given by the pure exponential
<¥(s)> =y, e TS (128)

where the exponent r is given in these three Fokker-Planck approximations by

-~ 1.2 ~ ~2
e )t )] o)), N2, (129
7 W3 8 B
r=gi2e-8 . ya1 (130)
2 L
o + 8
r = (<ado - 8)/a N=0 . (131)
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We note that if we neglect the statistical corrections entirely, we have the
so-called "atomic mix" approximation, and the transport equation for <¥> 1is
simply, in the source-free case,

d<y>

T + <gX¥> =0 ° (132)

This equation again has Eq. (128) as its :olution, with r = <g> in this case.

To obtain some 1dea of the accuracy of these various approximate formula-
tions, we present In Tables 1 and 2 a few tv={fral rumrrizal T2sults. We have
set to unlty the incident distribution, 1.=2., ¥, = 1, and have chosen a length
,scale such that <g> = 1 for all cases considered. Also, these two tables give
<¥(s)> at s = gn 10, and hence for all cases the atomic mix result is simply
<¥(s)> = 0.1 since <g>s = ¢n 10. The deviation of our exact result for <¥> as
given by Eq. (118) from 0.1 gives an indi:ation of the importance of properly
accounting for the statistical nature of the medium in a transport calcula-
tion. The deviation of the small fldctuation equation results, and the cor-
responding Fokker-Planck approximations, from the exact results gives an indi-
cation of the accuracy of these various simplified, but approximate, transport

descriptions in a random medium.

Table I presents four different cases, each having Ap = Ag, and hence
Pp = Pg = 1/2. As we have already remarked, the small fluctuation equation is
exact for all size fluctuations when p, = pg = 1/2. We see from this ctable,
in particular for the last case, the importance of accounting for the statis-
tical nature of the medium. That is, for tnis case the atomic mix model which

completely ignores this statistical nature underestimates <¥> by a factor in
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excess of three, We also see from this table that the lowest order (N=0)
Fokker-Planck result 1s more accurate than the higher order (N=l! and 2)
results. This is probably due to extending the lower integration limit in
Eq. (37) to sy = —= Iin deriving the Fokker-Planck approximation given by
Eq. (42). This makes the approximation asymptotic in character; keeping more
terms in the sum in Eq. (42) does not necessarily improve the accuracy of the

result.

In Table II we present five additional cases, but for these cases Ay #
Ag, and hence p, # pg # 1/2. Here we can assess the accuracy of the small
flueruation avoroximation. We see, from the last two cases 1in this table,
that the small fluctuation model is completely inadequate when the fluctua-
tions are large and the statistical corrections are important (i.e., one is
far from the atomic mix limit). 1In particular, for the last case <¥) exceeds
unity; the small fluctuation equation 1s predicting growth rather than decay
as the particles traverse the medium. This comes about since r_ as given by
Eq. (127) 1s negative. Such growth also occurs for the second to last case in
this table, although in this case <¥> at s = 2n 10 is still less than unity.
The “complex™ entry 1in this table means that Eq. (129) gave a value for r

which is not real.

Based upon these results and other cases we have considered, it appears
that the following two conclusions can tentatively be drawn. First, the small
fluctuation equation should only be used wren the fluctuations are, in fact,
small or when Pp * Pg = 1/2. Secondly, the Fokker-Planck model, since it is
an approximation to the small fluctuation equation, should only be used under

the same circumstances, and the N=0 model seszms to be the most accurate.
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We conclude this section by obtaining an exact solution for <¥(s)> in the
presence of a source (S#0) for our two-fluid Markovian mixture. 1In thils case,
we solve the exact transport-like equation for <¥(s)>, namely Eq. (21), as
opposed to ensemble averaging Eg. (3). The statistical correction terms in

Eq. (21), T and T,,» are given by Eqs. (7) and (76), and can be rewritten as

n

- s 1 ‘-2
LTn = Hn f dis(s—sl) f dsZR(sl—sz)...I dsn_lR(sn_Z-sn_l) , (133)

o o o

~ s 1 "n=2
LTn = Kn £ dis(s-sl) £ dszR(sl-sz)...£ dsn_lR(sn_z-sn_l)<Y(sn_l)>, (134)
where the kernel R(s) 1is given by

R(s) = exp(-as) . (135)

Written 1in this way, Lin and L;n can he seen to be multiple convolution
integrals, and hence Eq. (21) can be solved by Laplace transforming. If we
again define ¢(p) as the Laplace transform of <¥(3)> according to Eq. (107),
then a Laplace transform of Eq. (21) with Lfn and L;n given by Egs. (133) and
(134) gives

n+l . =-(n+l1)
(p+<a>)e(p) - ¥_ + ¢(p) nEO (-7 K, (pto)
o ™ e T oy (136)
n=0

Using Eqs. (73) and (74) for H, and K, in Eq. (136), summing the resulting

geometric series, and solving for $(p), we find

: wo(p+5) + p—1[<5>(p+5)-u]
o(p) = — _—, (137)
(p+a)(p+<o>) - 8
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where a, B, and o are given by Eqs. (68), (69), and (117), respectively. The
Laplace inversion of Eq. (137) gives the exact result, within the context of

our Markov model, for the ensemble averaged distribution function <¥(s)> as

r r+ - ’E ‘1'+S S —I'_S
<¥(s)> = ¥ |(———) e + (m——) e
oj'r, - r I - T
[ "+ - + -
. [<s$>(g-r,) = a] -r,» [<>@G-r) - a] -r_s
e - ]
] r.(r -r) r (r -r))
X520 -~ a , (138)
T, r_

with L again given by Eq. (119). We notz that in the absence of a source
(<{S>=a=0), Eaq. (138) agrees with the result obtained earlier [see Eq. (118)]
by ensemble averaging Eq. (3) with S=0. We emphasize that Eq. (138) is an
exact expression for <¥(s)>, the ensemble averaged distribution function, but
only for time-independent transport through a purely absorbing (no scattering)
medium with statistics as described in Sec. III. In particular, this statis-
tical model 1is a Markovian mixture of tCw: 1immiscible fluids, and further
assumes that the Markov statistical parameters Ay as well as the fluid

parameters g; and S;, 1i=A,B, are all independent of position.

V. CONCLUDING REMARKS

The work summarized in this paper rapresents our first attempt at
developing a general formalism for descrihing linear transport through a
medium composed of two randomly mixed fluids. We have considered only the very
simplest situation, that of time independent transport through a purely

absorbing medium for a
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two-component Markovian mixture, with all paramecters Air T4 and Si’ i=A,B,
independent of position. Clearly, many generalizations suggest themselves.
With the 1nclusion of time dependence and scattering, a generic linear

transport equation 1s given by
1 3v¥
— — . + +
v 3t &-Ty (cra cs)?

= [ ad'a (@'-D¥@") +s (139)
4o
> >
where ¥ = ¥(r,Q,t), and the remaining noration in Eq. (139) 1is standard. In
addition to explicit consideration of time dependence and a scattering contri-
bution, one®could investigate other (than Markov) statistical models for the

random variables og,, 04, and S.

With regard to the simplified version of Eq. (139) considered in this
paper (crs = 3¥/3t = 0), an open question is the physical realizability of our
Markov model. Along any given direction -, one can easily envision a mixture
of two types of fluid packets, with each pracket of fluid 1 having an exponen-
tial chord length distribution with a mear ij;. However, can one realize such
exponential chord length distributions simultaneously in all directions s in
three dimensional geometry? In this regar:, we note that if the fluid mixture
is composed of alternating fluid slabs, wilih each slab of fluid i infinite in
two dimensions and with an exponmentially distributed thickness with mean T; in
the third dimension, then one indeed reali:es exponential chord length distri-
butions in all directions s simultaneouslv. However, the mean chord length
will be s dependent and given by Ay = 1t/“’ where p is the cosine of the
angle between the direction s and the normal to the slab surfaces. Can any

statement concerning physical realizability be made for non-slab geometry, and
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can one envision any fluid packet geometry which has exponential chord length
distributions with the same mean A; in all directions? It would also be
interesting to investigate the robustness of the results given 1In this paper
to the statistical model used. Specificzlly, within the context of a two-
fluid mixture, how sensitive are the results to the use of an exponential
distribution of chord lengths? We note that the exponential distribution
contains only one parameter Ai, and hence che average chord length (which is
just Ay) and the variance (which is just A%) are not independent. Hence one
might ask how sensitive are our results, =.g., Eq. (138), for given average
chord lengths of each fluid component, to :he variances (and higher moments)
of the chord 1length distributions? C.early the applicability of the
exponential (or any other)l distribution must be established from the
underlying physics of the particular transport situation under consideration.
We mention parenthetically that the exponential distribution appears to be a
fairly good description of the distributior of rock fragment sizes, as dis-
cussed by Engleman, Jaeger, and Levi.l6The hope is that relevant transport
results are relatively insensitive to the chord length distributions, thus

obviating the need for a detailed chord lengrh description.

We hope to address these points, as wel. as extensions of our analysis to

more general transport equations, in future wublications.
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TABLE 1.

<‘¥(1n 10)) for DA pB = 1/2-

Fokker-Planck

Parameters Exact N = 2 N =1 N =20
Ay = 0.1 0.1001 0.1001 0.1001 0.1001
AB = 0.1
UA = 1.1
UB = 0-9
Ay = 10.0 0.1023 0.1749 0.1036 0.1019
Oy = 1.1
og = 0.9
Ap = 0.1 0.1095 0.1098 N.1097 0.1093
XB = >
Oy = l.

UB = 0.1
Ap = 10.0 0.3592 0.6362 0.6194 0.4732
Ag = 10.0
O'A = 1.9
UB = Ool
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TABLE II. <¥(&n 10)> for Pa # PR
Small

Fluctuation Fokker-Planck
Parameters Exact Equation N =2 N =1 N=20
Ay = 0.02 0.1000 0.1000 0.1000 0.1000 0.1000
Ag = 0.08
OA = 1.1
op = 0.975
Ay = 2.0 0.1004 »0.1004 0.1007 0.1006 0.1004
Xg = 8.0 '
UA = 1-1
gg = 0.975
Ap = 0.02 0.1083 0.1086 0.1086 0.1086 0.1085
XB = 0-08
CTA= 4,0
og = 0.25
Ay = 2.0 0.3694 0.9989 1.6656 1.6131 2.4245
Ag = 8.0
ap = 4.0
og = 0.25
Ap = 1.0 0.5802 9.5438 complex 8.5259 283.90
AB = 9.0
UA = 9;1
OB = 0,1
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